

Warm-up Lesson 4-4

What does "CPCTC" stand for?

the diagram for Exercises 2 and 3.

LIAM SING SING SING

- 2. Tell how you would show $\triangle ABM \cong \triangle ACM$
- 3. Tell what other parts are congruent by CPCTC. FLE AG, CME BM, LCELB

Use the diagram for Exercises 4 and 5.

- **4.** Tell how you would show $\triangle RUQ \cong \triangle TUS$.
- 5. Tell what other parts are congruent by CPCTC.

X-4=3X+V

Base Z's

Given

 $\overline{XY} \cong \overline{XZ}$

Prove

 $\angle Y \cong \angle Z$

Construct XD bisecting ∠YXZ

 $XY\cong XZ$

given

 $\angle 1\cong \angle 2$

defn angle bisector

 $XB \cong XB$

refl POC

 $\triangle XYD \cong \triangle XZD$

SAS

 $\angle Y\cong \angle Z$

CPCTC

QED

Thm 4-3 Isosceles Triangle Theorem

If 2 sides of a \triangle are \cong

then the angles opposite those sides are \cong .

Thm 4-3 Isosceles Triangle Theorem

If 2 sides of a Δ are \cong

then the angles opposite those sides are \cong .

Thm 4-3 Isosceles Triangle Theorem

If 2 sides of a \triangle are \cong

then the angles opposite those sides are \cong .

proves L's

Thm 4-4 Conv of Isosceles △ Thm

If 2 angles of a Δ are \cong

then the sides opposite those angles are \cong .

Thm 4-4 Conv of Isosceles △ Thm

If 2 angles of a Δ are \cong

then the sides opposite those angles are \cong .

Thm 4-4 Conv of Isosceles △ Thm

If 2 angles of a Δ are \cong

then the sides opposite those angles are \cong .

Proves a that is a la isos b

Thm 4-5 Isosceles △ Bisector Thm

The bisector of the vertex angle of an isosceles Δ is the \bot bisector of the base.

Isos A Ris Thm

Thm 4-5 Isosceles △ Bisector Thm

The bisector of the vertex angle of an isosceles Δ is the \bot bisector of the base.

Thm 4-5 Isosceles △ Bisector Thm

The bisector of the vertex angle of an isosceles Δ is the \bot bisector of the base.

Corollary to Thm 4-3

... err, what's a corollary???

A simple statement that follows immediately from a theorem.

Corollary to Thm 4-3

If a Δ is equilateral then it is equiangular

 $\underline{\mathsf{Given}} \colon \overline{\mathit{XY}} \cong \overline{\mathit{YZ}} \cong \overline{\mathit{XZ}}$

Prove: $\angle X \cong \angle Y \cong \angle Z$

Corollary to Thm 4-4

If a Δ is equiangular then it is equilateral

 $\underline{\mathsf{Given}} : \angle X \cong \angle Y \cong \angle Z$

 $\underline{\mathsf{Prove}} \colon \overline{XY} \cong \overline{YZ} \cong \overline{XZ}$

... nevot page ...

1 What kind of Δ is this?

- A Equiangular
- B Scalene
- C Isosceles
- D none of the above

... next page...

2 How do you know?

- A Thm 4-1
- B Thm 4-2
- C Thm 4-3
- D Thm 4-4
- E Thm 4-5
- F none of the above

Example

next page...

1 What is the value of S?

Example

- 1) What is the value of r?
- 2) What is the value of s?

1 What is the value of \overline{x} ?

Example

- 1) What is the value of *x*?
- 2) What is the value of *y*?

back

2

L4-5 HW Problems